Hive简介及核心概念
一、简介
Hive 是一个构建在 Hadoop 之上的数据仓库,它可以将结构化的数据文件映射成表,并提供类 SQL 查询功能,用于查询的 SQL 语句会被转化为 MapReduce 作业,然后提交到 Hadoop 上运行。
特点:
- 简单、容易上手 (提供了类似 sql 的查询语言 hql),使得精通 sql 但是不了解 Java 编程的人也能很好地进行大数据分析;
- 灵活性高,可以自定义用户函数 (UDF) 和存储格式;
- 为超大的数据集设计的计算和存储能力,集群扩展容易;
- 统一的元数据管理,可与 presto/impala/sparksql 等共享数据;
- 执行延迟高,不适合做数据的实时处理,但适合做海量数据的离线处理。
二、Hive的体系架构
Hive是典型C/S模式。Client端有JDBC/ODBC Client和Thrift Client两类。Server 端则分为如下几个部分:
用户接口:client
CLI(hive shell)、JDBC/ODBC(java访问hive),WEBUI(浏览器访问hive)
元数据:metastore
元数据包括:表名、表所属数据库、表的拥有者、列/分区字段、表的类型、表数据所在目录。
驱动器:
dirver包含:解析器、编译器、优化器、执行器
解析器:
将SQL字符串转换成抽象语法树AST,这一步一般都是用第三方工具库完成,比如antlr;对AST语法树进行分析,比如表否存在、字段是否存在、SQL语义是否有误。
编译器:
将AST编译生成逻辑执行计划。
优化器:
对逻辑执行计划进行优化。
执行器:
把逻辑执行计划转换成物理执行计划。对于hive来说,就是MR/TEZ/Spark;
2.1 command-line shell & thrift/jdbc
可以用 command-line shell 和 thrift/jdbc 两种方式来操作数据:
- command-line shell:通过 hive 命令行的的方式来操作数据;
- thrift/jdbc:通过 thrift 协议按照标准的 JDBC 的方式操作数据。
2.2 Metastore
在 Hive 中,表名、表结构、字段名、字段类型、表的分隔符等统一被称为元数据。所有的元数据默认存储在 Hive 内置的 derby 数据库中,但由于 derby 只能有一个实例,也就是说不能有多个命令行客户端同时访问,所以在实际生产环境中,通常使用 MySQL 代替 derby。
Hive 进行的是统一的元数据管理,就是说你在 Hive 上创建了一张表,然后在 presto/impala/sparksql 中都是可以直接使用的,它们会从 Metastore 中获取统一的元数据信息,同样的你在 presto/impala/sparksql 中创建一张表,在 Hive 中也可以直接使用。
2.3 HQL的执行流程
Hive 在执行一条 HQL 的时候,会经过以下步骤:
- 语法解析:Antlr 定义 SQL 的语法规则,完成 SQL 词法,语法解析,将 SQL 转化为抽象 语法树 AST Tree;
- 语义解析:遍历 AST Tree,抽象出查询的基本组成单元 QueryBlock;
- 生成逻辑执行计划:遍历 QueryBlock,翻译为执行操作树 OperatorTree;
- 优化逻辑执行计划:逻辑层优化器进行 OperatorTree 变换,合并不必要的 ReduceSinkOperator,减少 shuffle 数据量;
- 生成物理执行计划:遍历 OperatorTree,翻译为 MapReduce 任务;
- 优化物理执行计划:物理层优化器进行 MapReduce 任务的变换,生成最终的执行计划。
关于 Hive SQL 的详细执行流程可以参考美团技术团队的文章:Hive SQL 的编译过程
三、数据类型
3.1 基本数据类型
Hive 表中的列支持以下基本数据类型:
大类 | 类型 |
---|---|
Integers(整型) | TINYINT—1 字节的有符号整数 SMALLINT—2 字节的有符号整数 INT—4 字节的有符号整数 BIGINT—8 字节的有符号整数 |
Boolean(布尔型) | BOOLEAN—TRUE/FALSE |
Floating point numbers(浮点型) | FLOAT— 单精度浮点型 DOUBLE—双精度浮点型 |
Fixed point numbers(定点数) | DECIMAL—用户自定义精度定点数,比如 DECIMAL(7,2) |
String types(字符串) | STRING—指定字符集的字符序列 VARCHAR—具有最大长度限制的字符序列 CHAR—固定长度的字符序列 |
Date and time types(日期时间类型) | TIMESTAMP — 时间戳 TIMESTAMP WITH LOCAL TIME ZONE — 时间戳,纳秒精度 DATE—日期类型 |
Binary types(二进制类型) | BINARY—字节序列 |
TIMESTAMP 和 TIMESTAMP WITH LOCAL TIME ZONE 的区别如下:
- TIMESTAMP WITH LOCAL TIME ZONE:用户提交时间给数据库时,会被转换成数据库所在的时区来保存。查询时则按照查询客户端的不同,转换为查询客户端所在时区的时间。
- TIMESTAMP :提交什么时间就保存什么时间,查询时也不做任何转换。
3.2 隐式转换
Hive 中基本数据类型遵循以下的层次结构,按照这个层次结构,子类型到祖先类型允许隐式转换。例如 INT 类型的数据允许隐式转换为 BIGINT 类型。额外注意的是:按照类型层次结构允许将 STRING 类型隐式转换为 DOUBLE 类型。
3.3 复杂类型
类型 | 描述 | 示例 |
---|---|---|
STRUCT | 类似于对象,是字段的集合,字段的类型可以不同,可以使用 名称.字段名 方式进行访问 |
STRUCT (‘xiaoming’, 12 , ‘2018-12-12’) |
MAP | 键值对的集合,可以使用 名称[key] 的方式访问对应的值 |
map(‘a’, 1, ‘b’, 2) |
ARRAY | 数组是一组具有相同类型和名称的变量的集合,可以使用 名称[index] 访问对应的值 |
ARRAY(‘a’, ‘b’, ‘c’, ‘d’) |
3.4 示例
如下给出一个基本数据类型和复杂数据类型的使用示例:
1 | CREATE TABLE students( |
四、内容格式
当数据存储在文本文件中,必须按照一定格式区别行和列,如使用逗号作为分隔符的 CSV 文件 (Comma-Separated Values) 或者使用制表符作为分隔值的 TSV 文件 (Tab-Separated Values)。但此时也存在一个缺点,就是正常的文件内容中也可能出现逗号或者制表符。
所以 Hive 默认使用了几个平时很少出现的字符,这些字符一般不会作为内容出现在文件中。Hive 默认的行和列分隔符如下表所示。
分隔符 | 描述 |
---|---|
\n | 对于文本文件来说,每行是一条记录,所以可以使用换行符来分割记录 |
^A (Ctrl+A) | 分割字段 (列),在 CREATE TABLE 语句中也可以使用八进制编码 \001 来表示 |
^B | 用于分割 ARRAY 或者 STRUCT 中的元素,或者用于 MAP 中键值对之间的分割, 在 CREATE TABLE 语句中也可以使用八进制编码 \002 表示 |
^C | 用于 MAP 中键和值之间的分割,在 CREATE TABLE 语句中也可以使用八进制编码 \003 表示 |
使用示例如下:
1 | CREATE TABLE page_view(viewTime INT, userid BIGINT) |
五、存储格式
5.1 支持的存储格式
Hive 会在 HDFS 为每个数据库上创建一个目录,数据库中的表是该目录的子目录,表中的数据会以文件的形式存储在对应的表目录下。Hive 支持以下几种文件存储格式:
格式 | 说明 |
---|---|
TextFile | 存储为纯文本文件。 这是 Hive 默认的文件存储格式。这种存储方式数据不做压缩,磁盘开销大,数据解析开销大。 |
SequenceFile | SequenceFile 是 Hadoop API 提供的一种二进制文件,它将数据以<key,value>的形式序列化到文件中。这种二进制文件内部使用 Hadoop 的标准的 Writable 接口实现序列化和反序列化。它与 Hadoop API 中的 MapFile 是互相兼容的。Hive 中的 SequenceFile 继承自 Hadoop API 的 SequenceFile,不过它的 key 为空,使用 value 存放实际的值,这样是为了避免 MR 在运行 map 阶段进行额外的排序操作。 |
RCFile | RCFile 文件格式是 FaceBook 开源的一种 Hive 的文件存储格式,首先将表分为几个行组,对每个行组内的数据按列存储,每一列的数据都是分开存储。 |
ORC Files | ORC 是在一定程度上扩展了 RCFile,是对 RCFile 的优化。 |
Avro Files | Avro 是一个数据序列化系统,设计用于支持大批量数据交换的应用。它的主要特点有:支持二进制序列化方式,可以便捷,快速地处理大量数据;动态语言友好,Avro 提供的机制使动态语言可以方便地处理 Avro 数据。 |
Parquet | Parquet 是基于 Dremel 的数据模型和算法实现的,面向分析型业务的列式存储格式。它通过按列进行高效压缩和特殊的编码技术,从而在降低存储空间的同时提高了 IO 效率。 |
以上压缩格式中 ORC 和 Parquet 的综合性能突出,使用较为广泛,推荐使用这两种格式。
5.2 指定存储格式
通常在创建表的时候使用 STORED AS
参数指定:
1 | CREATE TABLE page_view(viewTime INT, userid BIGINT) |
各个存储文件类型指定方式如下:
- STORED AS TEXTFILE
- STORED AS SEQUENCEFILE
- STORED AS ORC
- STORED AS PARQUET
- STORED AS AVRO
- STORED AS RCFILE
六、内部表和外部表
内部表又叫做管理表 (Managed/Internal Table),创建表时不做任何指定,默认创建的就是内部表。想要创建外部表 (External Table),则需要使用 External 进行修饰。 内部表和外部表主要区别如下:
内部表 | 外部表 | |
---|---|---|
数据存储位置 | 内部表数据存储的位置由 hive.metastore.warehouse.dir 参数指定,默认情况下表的数据存储在 HDFS 的 /user/hive/warehouse/数据库名.db/表名/ 目录下 |
外部表数据的存储位置创建表时由 Location 参数指定; |
导入数据 | 在导入数据到内部表,内部表将数据移动到自己的数据仓库目录下,数据的生命周期由 Hive 来进行管理 | 外部表不会将数据移动到自己的数据仓库目录下,只是在元数据中存储了数据的位置 |
删除表 | 删除元数据(metadata)和文件 | 只删除元数据(metadata) |